Methods for Improving the Classification Accuracy of Biomedical Signals Based on Spectral Features

نویسنده

  • Paul Thomas
چکیده

Biomedical signals are long records of electrical activity within the human body, and they faithfully represent the state of health of a person. Of the many biomedical signals, focus of this work is on Electro-encephalogram (EEG), Electro-cardiogram (ECG) and Electro-myogram (EMG). It is tiresome for physicians to visually examine the long records of biomedical signals to arrive at conclusions. Automated classification of these signals can largely assist the physicians in their diagnostic process. Classifying a biomedical signal is the process of attaching the signal to a disease state or healthy state. Classification Accuracy (CA) depends on the features extracted from the signal and the classification process involved. Certain critical information on the health of a person is usually hidden in the spectral content of the signal. In this paper, effort is made for the improvement in CA when spectral features are included in the classification process. Spectral features are extracted from EEG signal using Multi Wavelet Transform (MWT). Epileptic and Normal cases are classified using k-Nearest Neighbors (k-NN) classifier. Independent Component Analysis (ICA) and Discrete Wavelet Transform (DWT) are used to extract features from ECG signals. These features along with temporal features are used in the classification process. An Artificial Neural Network (ANN) with three hidden layers is used to classify the signal to Ventricular Fibrillation (VF) and non-VF. EMG signal is a train of Motor Unit Action Potentials (MUAP). Dominant MUAP is identified using temporal energy criterion and spectral features are extracted from this using DWT. This method reduces the computational complexity to a large extent. Classification of the signals in to Amyotrophic Lateral Sclerosis (ALS), Myopathy and Paul Thomas and Dr. R.S. Moni http://www.iaeme.com/IJARET/index.asp 106 [email protected] Normal is done with k-NN classifier. In all the three cases, CA is found to be better than those based on existing methods. Training data set for classification are selected as those closest to the mean feature vector. This step also contributed to the accuracy of the results.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Detection and Classification of Emotions Using Physiological Signals and Pattern Recognition Methods

Introduction: Emotions play an important role in health, communication, and interaction between humans. The ability to recognize the emotional status of people is an important indicator of health and natural relationships. In DEAP database, electroencephalogram (EEG) signals as well as environmental physiological signals related to 32 volunteers are registered. The participants in each video we...

متن کامل

Detection and Classification of Emotions Using Physiological Signals and Pattern Recognition Methods

Introduction: Emotions play an important role in health, communication, and interaction between humans. The ability to recognize the emotional status of people is an important indicator of health and natural relationships. In DEAP database, electroencephalogram (EEG) signals as well as environmental physiological signals related to 32 volunteers are registered. The participants in each video we...

متن کامل

EMG-based wrist gesture recognition using a convolutional neural network

Background: Deep learning has revolutionized artificial intelligence and has transformed many fields. It allows processing high-dimensional data (such as signals or images) without the need for feature engineering. The aim of this research is to develop a deep learning-based system to decode motor intent from electromyogram (EMG) signals. Methods: A myoelectric system based on convolutional ne...

متن کامل

Improving of Feature Selection in Speech Emotion Recognition Based-on Hybrid Evolutionary Algorithms

One of the important issues in speech emotion recognizing is selecting of appropriate feature sets in order to improve the detection rate and classification accuracy. In last studies researchers tried to select the appropriate features for classification by using the selecting and reducing the space of features methods, such as the Fisher and PCA. In this research, a hybrid evolutionary algorit...

متن کامل

Hyperspectral Images Classification by Combination of Spatial Features Based on Local Surface Fitting and Spectral Features

Hyperspectral sensors are important tools in monitoring the phenomena of the Earth due to the acquisition of a large number of spectral bands. Hyperspectral image classification is one of the most important fields of hyperspectral data processing, and so far there have been many attempts to increase its accuracy. Spatial features are important due to their ability to increase classification acc...

متن کامل

Spectral-spatial classification of hyperspectral images by combining hierarchical and marker-based Minimum Spanning Forest algorithms

Many researches have demonstrated that the spatial information can play an important role in the classification of hyperspectral imagery. This study proposes a modified spectral–spatial classification approach for improving the spectral–spatial classification of hyperspectral images. In the proposed method ten spatial/texture features, using mean, standard deviation, contrast, homogeneity, corr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016